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Abstract. A plausible correlation is made between a period-doubling artificial neuron
pair and experimentally found chaos in the squishy human brain. Preliminary statistical
evaluations are done.

1. Introduction

Chaos is everywhere; it’s in the orbit of the planets, it’s in our weather, it’s used in
computer graphics. Since the second century A.D., the brain has been generally accepted
as the organ of the mind, and since the 1980’s, chaos has been on the brain. Chaos is in
our brains. Chaos has been found in how we process external senses, and may be key to
memory. It helps explain the figure/ground problem, and has been implicated in at least
one theory of the evolution of vocabulary [1] as well as synaesthesia [2]. But most models
of the brain do not include chaos. Those that do, don’t seem convincingly biological.

On one end of the spectrum, we have a simple computer model for a neuron which
has been analytically proven [3] to have regions of period doubling and all that chaotic
goodness.

On the other end of the spectrum, we have the squishy human brain. The squishy human
brain (or at least the squishy cat brain, a close relative for our purposes) has been shown to
have elements of chaotic behavior in neural spike trains in the visual system. [4] Statistical
voodoo (see section 1.4) can be used to test the dimension of this information, and show
that it is indeed fractal.

Unfortunately, the chaotic goodnes of the simple computer model for a neuron has not
been mapped in any way that I can find to the chaotic goodness of the squishy human
brain.

So I propose to give an overview of all related factoids while attempting to tie, in a “there
exists” sort of manner, one to the other. Preferably with a couple of applets and pictures.

Ideally I will be able to create spike trains out of this simple computer model for a neuron
which resolve under the statistical voodoo.

Whether that will mean anything is anyone’s guess.

1.1. Chaos basics. So what is this chaos? Chaos is not disorder. Chaos is actually quite
ordered. Chaos requires three things [5]:

• elements of regularity (periodic points that are dense)
• elements of oneness (dense orbits)
• elements of unpredictibility (sensitive dependance on initial conditions)

What does that give you? Infinity, of a sort, non-integer dimensions of “arbitrary”
complexity.

To understand these things three, we will need to understand what an iterated function
is. An iterated function is a function that maps from one space back into the same space.
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Figure 1. a gratuitous shot of The Julia Set

This is the “engine” of chaos. We will define the function f to map a point x ∈ X → X.
Iterating the function, we get f 1, f 2, . . . . We define an orbit to be the sequence of values
followed from some seed x. If for some m, n, m 6= n, fm(x) = fn(x), then we say the orbit
is periodic. A fixed point is a point which maps back to itself directly.

Elements of regularity, or periodic points that are dense, bespeaks of the ability to find
a seed that is periodic arbitrarily (in the mind of the beholder) close to any other seed
you’d like. That is, within any interval around an aperiodic seed, a periodic seed can be
found. For instance, presuming the space of R, we could pick our (nonperiodic) seed x
to be 1.349156, and having periodic points that are dense would imply we could find a
periodic seed y within a happy ε of x.

Elements of oneness, or “dense orbits”, implies that there exists at least one orbit that
gets arbitrarily close to every point in the set. This is also referred to as a “transitive orbit”.
While this may be hard to believe, the quadratic map, where chaos is easy to find, is easily
mapped into symbolic space, where a transitive orbit tends to be trivial to construct.

The final point, sensitivity on initial conditions, is the one that gave rise to the popu-
larization of “the butterfly effect”. That is, any two points arbitrarily close to each other
will eventually be split by an arbitrary distance. The slightest difference in the seed, even
just in the precision used to represent the seed (as Edward Lorenz found in his differential
models of weather patterns [6]).

A chaotic system is inherently dynamic. It is simple to conceive it as a system constantly
“in motion”. Chaotic systems can be both robust and sensitive. The slightest nudge can
cause a periodic or nearly periodic orbit to essentially jump states. Or the state can resist
stern perturbation. It depends on the system, and the state.

This becomes important later on.

For now, suffice it to say that this makes for some very pretty pictures, most famously, the
Mandelbrot and Julia sets (as seen in Figure 1). Also interesting is the study of piecewise
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Figure 2. A clunky looking perceptron

isometries [7], systems mapping geometric constructions by rotations and translations back
onto themselves; the simple trick is to represent the figures as vectors of their points.

1.2. Artificial Neural Net basics. Artificial neural nets are inherently discrete time
beasties, a directed, typically acyclic, graph of perceptrons. Any individual perceptron has
a number of inputs and outputs, and an internal state, all of which tend to be represented
by elements of the R (see Figure 2). The outputs tend to be functions of the summation
of weighted inputs. A typical “firing”, or “activation” function is the sigmoid:

1

1 + e−z

where z is the sum of weighted inputs. This function determines the next state of a given
perceptron, which is generally synonymous with its output.

1.2.1. Learning in Neural Networks. Imagine if you will, this directed, acyclic graph. It
has inputs, and it has outputs. The question becomes, “What does it do?” And that all
depends on what you want it to do.

It is difficult to create a neural net and match it to any complex task entirely by hand.
This is where the simplest form of artificial intelligence comes into play. The human decides
what inputs exist, what the output is supposed to signify, and generally how many neurons
in how many ‘layers’ the neurons will be divided into. Layers other than input and output
are referred to as hidden layers; they are ‘beyond our ken’ (or at least, care). We only care
about inputs and outputs, supposedly. The machine is a black box.

Random values are chosen for all weights, and the system is run. The output is tested
against the desired output, and (typically) the weights are updated based upon that dif-
ference. These differences are then backpropogated through the network, and the system is
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run again. The system is run on a large set of patterns so that it will ‘know’ all of them,
and it is hoped that then the system has ‘learned’ some generalized pattern and will be
able to respond appropriately to inputs that were not part of its original test set.

The grandfather of learning in artificial neural networks is Donald Hebb, whose 1949
paper [8] laid the foundations. The Hebb learning rule has a maximum capacity, the
number of patterns it can remember, of about 0.14 the number of neurons included. Hebb
learning suffers from catastrophic forgetting1; if the hebbian neural network reaches capacity,
it becomes unable to retrieve any of the previously stored patterns.

‘Forgetful’, or ‘Palimpsest’, learning rules have been invented to avoid this catastrophic
memory failure; they fail more gracefully, replacing older memories with new patterns.
Unfortunately, nonchaotic palimpsests have been shown to have a capacity of only up to
0.05n.

Much more can be read in the canonical usenet neural network FAQ. [9]

1.2.2. Chaos in Neural Networks. Your typical neural network, the non-cyclic, or feed-
forward, can not exhibit chaos. No matter how many perceptrons you toss into the system,
there is no recursion; there is no self-reference. Recurrent Neural Networks (RNN’s) intro-
duce closed paths in the graph topology. Thus, we have a self-referencing, iterative system,
and the possibility of chaos.

Now we jump to a minimal, two perceptron RNN, fully connected. N1 is an input to N2

and vice versa, and they are each “connected” to themselves. There are very solid areas
of chaos in this system. [3]. Forgetful learning rules that ride the edge of chaos have been
shown to have a capacity as high as 0.25n! [10] This ties in, somehow, to [11], though I’m
not sure how much. And here’s a nifty article on ”The speed of information transfer”. [12]

1.3. Biological Neuron basics. A neuron is a cell. It has all the things that animal cells
have, only it’s a little more specialized. It has inputs called dendrites and typically has one
output axon, which may connect to many dendrites over synapses. A synapse is a “gap”
between the axon and the dendritic spine. Spine formation is constantly in flux, which may
be key in short- and long-term memory.

The adult human brain, weighing in at roughly 1.3kg, has on the order of 1011 neu-
rons [13]. The cerebellum, at 150 grams, has roughly 1010 neurons. These together have
on the order of 1014 dendritic spines, or an average of ten thousand synapses apiece.

By Hebbian updating, were these artificial neurons, the entire brain would be able to
hold 1.4 × 1010 patterns, and after that extreme senility approaching death would set in.
Linear ‘forgetful’ learning rules would see only 5.0 × 109 patterns. With a dash of chaos,
though, we’re approaching 2.5× 1010 patterns. Again, the question remains “How does all
this relate? Does it really at all?”

The average adult knows only between 10,000 and 20,000 words, and typically uses
no more than 3000 different words in daily conversation. On the other hand, words often
represent fairly complex ideas; language is a complicated beast, and sometimes it’s amazing
that we’ve managed to make any progress with it. [1], [14]. On top of that, it has to be
recognized how many patterns are built up of hundreds or thousands (or more) of other
patterns.

Let us take the visual system, for instance. Any picture you can imagine has blobs of
color, lines, shading... There are areas of the brain that code for, essentially, pixels. These
feed into areas that code for edges at any point in your visual field, which then feed into

1The more patterns it learns, the less “distance” there is between any two patterns. At the point of
catastrophic forgetfulness, the distance has dissolved to noise. All patterns have essentially been lost.
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detectors for lines at any point in your visual field of any orientation (360 degrees divided
into a resolution on the order of a single degree!). These then feed into motion detectors
that only respond to motion of certain orientations in certain directions. Line detectors
also feed into cells that only respond to, say, right angles of a certain orientation. And it
goes on from there.

Which doesn’t touch on the auditory system, tactile system, or the motor system, late
alone actual ‘memories’.

Before moving on to (or through) the chaotic definition of “elements of regularity”, it is
interesting to note that the brain appears to like, in that it requires less effort, elements of
geometrical regularity. This has been investigated thoroughly in the visual system [15] and
is likely present in each of the senses. Areas of the brain tend to be found to have evolved
into structures requiring a minimum amount of energy to represent and navigate “the real
world”. For instance, studies on cats show that neurons are far less active when viewing a
“real world” scene than white noise. [16]

1.3.1. Chaos in Biological Networks. With the numbers waved about vaguely, we move on
and ask what chaos has to do with the brain? Does chaos have anything to do with a
functioning human brain?

Though there is some dissent [17], early research [18][19] is still bearing fruit.

Indeed. There is chaos here, chaos there; chaos everywhere. And out of chaos, order (or
apparent disorder, depending on how you live your life).

This section needs more fleshing out, but to poke the highlights: the 1950’s Hodgkin-
Huxley model of everyone’s favorite neuron, that of the giant squid, displays a parameter
range where chaotic dynamics appear, though it is not certain whether they appear under
‘normal operating conditions’. It is certain that the dynamics of many ‘normally operating’
neural systems are fractal.

A biological neuron does not simply “sum and fire” based on its inputs; firing tends to
follow what appears to be a poisson distribution. Where does this perceived randomness
come from? Sensitivity to initial conditions.

1.4. Chaos detector (Statistical Voodoo). This is laid out ad nauseum in [20], and
a bit more simply in the introduction of [4]. Essentially, one takes the “rate estimate of
neural firing” over a set of counting intervals T . Fractal processes exhibit ‘slow’ power-law
convergence: The standard deviation of the firing rate decreates more slowly than 1/

√
T

as the averaging time increases. Nonfractal signals, on the other hand, decrease precisely
as 1/

√
T . Randomly reording the neural spike intervals loses long-term correlation, the

fractal nature of the train, and thus falls at precisely at 1/
√

T , while the original (natural,
fractal) signal falls more slowly.

2. Putting together Brain and Computer

It is shown that the chaos of the artificial neural net can be usefully interpreted in two
equally valid ways. The first treats their values at any given clock cycle as the “next” time
period between two spikes, equalized against a max and min from sample experimental
data. The second uses a threshold function to discretize whether or not the artificial
neurons can be said to have “fired”. Time between firings is then inherently measured in
“clock cycles”. Statistical Voodoo is used to show that regardless of the interpretation, the
fractal dimension of the information remains constant.
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3. Proofs or Experimental Methods or Simulations. . . Stuff.

Here I put the chaotic 2-perceptron network through its paces. First, I’ll state what I
expected to see:

The first data set is from a run of the chaotic 2-perceptron network for a ‘simulated’
5000 seconds, counting each ‘cycle’ as one hundredth of a second; the hope was for between
20 and 120 spikes per second. [21] A spike is considered ’generated’ when the perceptron’s
state/output is greater than .5 (on the sigmoid scale of 0 to 1).

The second data set is from a run of the chaotic 2-perceptron network for a ‘simulated
accumulated’ 5000 seconds, where at each clock cycle, a value of 0 is taken as a rate of ‘20
spikes per second’, or a delay of .05 seconds until the next spike; a value of 1 is taken as
a rate of ‘120 spikes per second’, or a delay of .0083 seconds until the next spike, with the
range between interpolated linearly.

Data set one aleph is the first data set randomly reordered; data set two aleph is the
second data set randomly reordered.

All four data sets were then put through the power law paces outlined in section 1.4
(Statistical Voodoo).

For completeness sake, another four data sets would have been created from a nonchaotic
range of the perceptron pair period-doubling analog, put through their paces paces as well;
however, both methods outlined failed to provide a significant standard deviation. The
deviance shrinks from ‘small’ to ‘zero’ too quickly to catch an accurate reading. It is likely
that this is due to many rounding errors in various calculations; they require further study.
It is quite premature to question the validity of the chaos (as proven analytically to exist),
and also premature to question the validity of the statistical voodoo.

4. Discussion

What have we proved? Apparently nothing, though this interdisciplinary review hope-
fully brings many ideas together, and can be a launching point for further research and
ideas. More reading needs to be done regarding the Information Theoretic Limit [22] and
how that relates to chaos [23], and other such information theory things regarding neural
spike trains [24], [25], [26], [27], [28], [29].

Adding chaos to an active model of the brain could help in reconstruction of images
based on electrical probes. [30] And more interesting models could be made and tested in
all sorts of ways.
...

fizzle
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